
in the Sciences
Mathematics
Max Planck Institute for

Intro. Comp. for Data Science (FMI08)

Dr. Nono Saha
June 14, 2023

Max Planck Institute for Mathematics in the Sciences
University of Leipzig/ScaDS.AI

Spring 2023

Course plan

1. Numerical optimization - line search
2. Gradient descent w/ backtracking
3. Homework 6
4. Newton’s method
5. Conjugation gradient algorithm
6. More optimization methods: CG

1

Numerical optimization - line
search

Numerical optimization - line search

Today, we will discuss one particular approach for numerical op-
timization - line search. It is a family of algorithmic approaches
that attempt to find (global or local) minima via iteration on an
initial guess. Generally, they are an attempt to solve,

min
α>0

f (xk + αpk)

where f (.) is the function we are attempting to minimize, xk is our
current guess at iteration k and α is the step length and pk is the
direction of movement.

We will only be dipping our toes in the water of this area, but the goal
is to provide some context for some of the more common (and more
accessible) use cases. With that in mind, we will look at methods for
smooth functions (2nd derivative exists and is continuous).

2

Line search: gradient method algorithm

Here is an example gradient method that uses a line search in step 4.

1. Set iteration counter k = 0, and make an initial guess x0 for the
minimum

2. Repeat:
3. Compute a descent direction pk
4. Choose αk to ’loosely’ minimize h(αk) = f (xk + αkpk) over

αk ∈ R+

5. Update xk+1 = xk + αkpk, and k = k+ 1
6. Until ‖∇f (xk+1)‖ < tolerance

At the line search step (4), the algorithm might either exactly
minimize h, by solving h(αk) = 0, or loosely, by asking for a sufficient
decrease in h.

Copied from Wikipedia

3

https://en.wikipedia.org/wiki/Line_search

Exercise: 1d gradient descent algorithm in Python

Given the algorithm previously described, write a function called
grad_desc_1d that takes four positional arguments:

1. x0: the initial guess of the minimum
2. f : any continuous function defined from R � R to minimise. It
means the argument should be callable.

3. grad: a function computing the gradient (or the first derivative)
of the function f subjects to minimization.

4. α: the learning rate or the step size

and two optional arguments max_step and threshold with
respective default values: 100 and 1e− 6.

The function should return tow lists: xk and f (xk).

After writing it, test the function on the two following functions:

1. f1(x) = x2

2. f2(x) = x4 + x3 − x2 − x
4

Gradient descent: our first basic example

1 opt = grad_desc_1d(-2., f, grad,
alpha=0.25)

2 plot_1d_traj(-2, 2, f, opt)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f(x
)

f(x)
f(xk + pk)

opt = grad_desc_1d(-2., f, grad,
alpha=0.5)

plot_1d_traj(-2, 2, f, opt)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f(x
)

f(x)
f(xk + pk)

5

Gradient descent: where can it go wrong?

1 opt = grad_desc_1d(-2., f, grad,
alpha=0.9)

2 plot_1d_traj(-2, 2, f, opt)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f(x
)

f(x)
f(xk + pk)

opt = grad_desc_1d(-2., f, grad,
alpha=1)

Warning - Failed to converge!
plot_1d_traj(-2, 2, f, opt)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f(x
)

f(x)
f(xk + pk)

6

Gradient descent: local minima problem

f2(x) = x4 + x3 − x2 − x

∇f2(x) = 4x3 + 3x2 − 2x − 1

1 opt = grad_desc_1d(-2., f2
, grad2, alpha=0.2)

2 plot_1d_traj(-1.5, 1.5, f2
, opt)

3

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

1

2

3

4

f(x
)

f(x)
f(xk + pk)

f2 = lambda x: x**4 + x**3 - x
**2 - x

grad2 = lambda x: 4*x**3 + 3*x
**2 - 2*x - 1

opt = grad_desc_1d(-2., f2,
grad2, alpha=0.25)

plot_1d_traj(-1.5, 1.5, f2, opt
)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

1

2

3

4

f(x
)

f(x)
f(xk + pk)

7

Gradient descent: alternative starting points

1 opt = grad_desc_1d(-1.5, f2,
grad2, alpha=0.2)

2 plot_1d_traj(-1.5, 1.5, f2, opt)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

1

2

3

4

f(x
)

f(x)
f(xk + pk)

opt = grad_desc_1d(-1.25, f2,
grad2, alpha=0.2)

plot_1d_traj(-1.5, 1.5, f2, opt)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

1

2

3

4

f(x
)

f(x)
f(xk + pk)

8

Gradient descent: problematic step sizes

Similarly to the first example, if
the step size is too large, it is impossible for the algorithm to converge.

1 opt = grad_desc_1d(1.5, f2,
grad2, alpha=0.75)

2 ## OverflowError: (34, 'Result
too large')

3 plot_1d_traj(-1.5, 1.5, f2, opt)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

1

2

3

4

f(x
)

f(x)
f(xk + pk)

opt = grad_desc_1d(-1.25, f2,
grad2, alpha=0.2)

OverflowError: (34, 'Result
too large')

plot_1d_traj(-1.5, 1.5, f2, opt)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

1

2

3

4

f(x
)

f(x)
f(xk + pk)

9

Gradient Descent w/ backtracking

Gradient Descent w/ backtracking

As we have just seen that having too large of a step can be
problematic, one solution is allowing the size to adapt.

Backtracking involves checking if the proposed move is
advantageous (i.e. f (xk + αpk) < f (xk)),

• If it is advantageous, then accept

xk+1 = xk + αpk

• If not, shrink α by a factor τ (e.g. 0.5) and check again.

Pick larger α to start, as this will not fix the inefficiency of small step
size.

This is a hand-wavy version of the Armijo-Goldstein condition. Check
f (xk − α∇f (xk)) ≤ f (xk)− cα(∇f (xk))2.

10

https://en.wikipedia.org/wiki/Backtracking_line_search

HomeWork 6: introduction to evolutionary algorithm for CF

In this homework, you will implement your first evolutionary
algorithm for solving a continuous function optimization problem.
The variant of the evolutionary algorithm you will implement is
called the differential evolutionary algorithm, and the algorithm
follows the steps:

1. Generate the initial population of N individuals or agents Pt.
2. Evaluate the Fitness of each individual
3. Mutate the population Pt to generate a new population P′t
4. Select N individual from Pt ∪ P′t proportianally to their fitnesses.
The selected individuals will reproduce to the next generation
and form a new population Pt+1

5. Stop if the halting criterion is satisfied; otherwise, t = t + 1 and
go to step 2.

11

HomeWork 6: EA initialisation algorithm

For the simple and classical implementation of DEA, the population
consists of N−individuals taken as a pair of real-valued vectors,
(xi, ηi),∀i ∈ {1, 2, . . . ,N}. xi’s are objective variables, and ηi’s are
standard deviations for Gaussian mutations (also known as strategy
parameters in self-adaptive evolutionary algorithms).

For a given interval xL and xU, the initial population is

Pt = {Xi},∀i ∈ {1, 2, . . . ,N}

where Xi = (xi, ηi) and

• xi = ri(xU − xL) + xL, where ri ∼ U(0, 1)
• ηi = r′i (x

U − xL) + xL, where r′i ∼ U(0, 1)

Note that xi is an n-dimensional vector. i.e. xi ∈ Rn.

12

HomeWork 6: EA evaluation step

In this homework, you will test your implementation on three
functions:

1. f1(x) = x4 + x3 − x2 − x, for n = 1 and xL = −2, xU = 2
2. f2(x) =

∑n
j=1 xj, for n = 30 and xL = −100, xU = 100

3. f3(x) =
∑n

j=1 [100(xj+1 − x2j)
2 + (xj − 1)2], for n = 30 and

xL = −30, xU = 30.

Note that in all three cases, the minimum value of the function is 0,
which means the evaluation of the best individual should be 0 in a
successful optimization case.

One of the expensive steps in a DEA is to evaluate the individual’s
fitness in the population. This allows us to compute the reproduction
rate or implement the so-called ”natural selection”. The evaluation
consists of simply computing the value of one of the above functions
(or objective function) at the given individual point xi.

13

HomeWork 6: EA mutation step

Mutation operation allows diversity in the population or, in our
optimization jargon, to generate new solutions (or new xi). So, for
each parent (xi, ηi), i = 1, . . . ,N, creates a single offspring (x′i , η

′
i) by:

For j = 1, . . . ,n
x′i(j) = xi(j) + ηi(j)×Nj(0, 1) (1)

η′i (j) = ηi(j) exp (τ ′ ×N (0, 1) + τ ×Nj(0, 1)) (2)

where xi(j), x′i(j), ηi(j), and η′i (j) denote the j− th component of the
vectors xi(j), x′i(j), ηi(j), η

′
i (j), respectively. The factors τ and τ ′ are

commonly set to (
√
2
√
n)−1 and (

√
2n)−1.

14

HomeWork 6: EA selection step

The operator consists of selecting solutions in the population for
reproduction. The fitter the solution, the more times as likely it is
selected to reproduce. This operator often requires a fitness function
evaluation, which means we must evaluate the fitness of the
mutated population P′t.

You will implement here the most straightforward selection operator
using the two following steps:

1. Conduct a pairwise comparison over the union of parents (xi, ηi)
and the offspring (x′i , η

′
i),∀i ∈ {1, 2, . . .N}. For each individual i, q

opponents are chosen uniformly at random from all the parents
and offspring. For each comparison, if the individual’s fitness is
smaller than the opponent’s, it receives a ”win.”

2. Select N individuals out of Pt and P′t that have the most wins to
be parents of the next generation.

15

Newton’s Method in 1d

Newton’s Method in 1d

Lets simplify things for now and consider just the 1d case and write
αpk as ∇,

f (xk +∆) ≈ f (xk) + ∆f ′(xk) +
1
2
∆2f ′′(xk)

To find the ∆ that minimizes this function, we can take a derivative
with respect to ∆ and set the equation equal to zero, which gives,

0 = f ′(xk) + ∆f ′′(xk) ⇒ ∆ =
f ′(xk)
f ′′(xk)

Which then suggests an iterative update rule of

xk+1 = xk −
f ′(xk)
f ′′(xk)

16

Newton’s Method: generalizing to nd

Based on the same argument, we can see the following result for a
function in Rn,

f (xk +∆) ≈ f (xk) + ∆T∇f (xk) +
1
2
∆T∇2f (xk)

To find the ∇ that minimizes this function, we can take a derivative
with respect to ∇ and set the equation equal to zero, which gives,

0 = ∇f (xk) +∇2f (xk) ⇒ ∆ = −(∇2f (xk))−1∇f (xk)f (xk)

Which then suggests an iterative update rule of

xk+1 = xk − (∇2f (xk))−1∇f (xk)f (xk)

17

	Numerical optimization - line search
	Gradient Descent w/ backtracking
	Newton's Method in 1d

