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Course plan

1. 2d gradient descent w/ backtracking
2. Newton’s method
3. Conjugation gradient algorithm
4. Numerical optimization - scipy
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Gradient descent method in 2d



A 2d cost function

We will be using mk_quad() to create quadratic functions with
varying conditioning (as specified by the epsilon parameter).

f (x, y) = 0.33(x2 + ε2y2)

∇f (x, y) =
[
0.66x
0.66ε2y

]

∇2f (x, y) =
[
0.66 0
0 0.66ε2

]

Similarly, write a Python function that implements the Rosenbrock
function, its first and second derivative. f is defined as follows:

f (x, y) = (1− x)2 + 100(y − x2)2
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Exercise

Plotting exercise

• Similar to the previous exercise, write a function called
plot_2d_traj that takes as inputs: x, y, f , a title (tle) for your
plot and a vector (or array) traj

2D Gradient descent

• Update your 1D gradient descent function to 2D
• Apply your 2D gradient descent on the two previously mentioned
functions. Vary the parameters, plot the result and let’s
comment on them.
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Newton’s Method in 1d



Newton’s Method in 1d

Lets simplify things for now and consider just the 1d case and write
αpk as ∆,

f (xk +∆) ≈ f (xk) + ∆f ′(xk) +
1
2
∆2f ′′(xk)

To find the ∆ that minimizes this function, we can take a derivative
with respect to ∆ and set the equation equal to zero, which gives,

0 = f ′(xk) + ∆f ′′(xk) ⇒ ∆ =
f ′(xk)
f ′′(xk)

Which then suggests an iterative update rule of

xk+1 = xk −
f ′(xk)
f ′′(xk)
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Newton’s Method: generalizing to nd

Based on the same argument, we can see the following result for a
function in Rn,

f (xk +∆) ≈ f (xk) + ∆T∇f (xk) +
1
2
∆T∇2f (xk)

To find the ∇ that minimizes this function, we can take a derivative
with respect to ∇ and set the equation equal to zero, which gives,

0 = ∇f (xk) +∇2f (xk) ⇒ ∆ = −(∇2f (xk))−1∇f (xk)f (xk)

Which then suggests an iterative update rule of

xk+1 = xk − (∇2f (xk))−1∇f (xk)f (xk)
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Conjugate gradients



Conjugate gradients

This is a general approach for solving a system of linear equations
with the form Ax = b where A is an n×n symmetric positive definite
matrix and b is n1 with x unknown.

This type of problem can also be expressed as a quadratic
minimization problem of the form,

min
x
f (x) = 1

2
xTAx − bTx + c

The goal is then to find n conjugate vectors (pTi Apj = 0 for all i 6= j)
and their coefficients such that.

x∗ =
n∑
i=1

αipi
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Conjugate gradient algorithm

Given x0, we set the following initial values,

r0 =∇f (x0)
p0 =− r0
k =0

while ||rk||2 > tol,

αk =
rTkpk

pTk∇2f (xk)pk
xk+1 =xk + αkpk
rk+1 =∇f (xk+1)

βk =
rTk+1∇2f (xk)pk
pTk+1∇2f (xk)pk

pk+1 =− rk+1 + βkpk; k = k+ 1
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Numerical optimisation methods
in scipy



CG in scipy

Scipy’s optimize module implements the conjugate gradient
algorithm by Polak and Ribiere, a variant that does not require the
hessian,

Differences

• αk is calculated via a line search along the direct
• βk+1 is replaced with

βPRk+1 =
∇f (xk+1)(∇f (xk+1)−∇f (xk))

∇f (xk)T∇f (xk)
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Other methods in scipy

Method: Newton-CG
It is a variant of Newton’s method but does not require inverting the
hessian, or even a hessian function - in which case it can be
estimated by finite differencing of the gradient.

Method: BFGS
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a
quasi-newton that iteratively improves its approximation of the
hessian,

Method: Nelder-Mead
This is a gradient-free method that uses a series of simplexes which
are used to iteratively bracket the minimum.
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