@Mat“emms Sca Ds.m

inthe Sciences
DRESDEN LEIPZIG

Intro. Comp. for Data Science (FMI08)

Dr. Nono Saha
June 21, 2023

Max Planck Institute for Mathematics in the Sciences
University of Leipzig/ScaDS.Al

Spring 2023

1. 2d gradient descent w/ backtracking
2. Newton’s method

3. Conjugation gradient algorithm

4. Numerical optimization - scipy

Gradient descent method in 2d

A 2d cost function

We will be using mk_quad() to create quadratic functions with
varying conditioning (as specified by the epsilon parameter).

f(x,y) = 0.33(x* + €y?)

0.66x
Vi) = [0.6662)/]
, foss 0
Vxy) = l 0 0.6662]

Similarly, write @ Python function that implements the Rosenbrock
function, its first and second derivative. f is defined as follows:

fOx,y) = (1—x)* +100(y — x*)°

Exercise

Plotting exercise

- Similar to the previous exercise, write a function called
plot_2d_traj that takes as inputs: x,y,f, a title (tle) for your
plot and a vector (or array) traj

2D Gradient descent
- Update your 1D gradient descent function to 2D

- Apply your 2D gradient descent on the two previously mentioned
functions. Vary the parameters, plot the result and let's

comment on them.

Newton’s Method in 1d

Newton’s Method in 1d

Lets simplify things for now and consider just the 1d case and write
apyg as A,

£+) ~ F0) + AF () + 5 8% (x)

To find the A that minimizes this function, we can take a derivative
with respect to A and set the equation equal to zero, which gives,

£ (%)
f//(XI?)

Which then suggests an iterative update rule of

0= F'(xe) + AF"(x4) = A =

f'(Xe)

M1 =5 F (k)

Newton’s Method: generalizing to nd

Based on the same argument, we can see the following result for a
function in R",

FO -+)~ F(x0) + ATVF() + 5ATVF ()

To find the V that minimizes this function, we can take a derivative
with respect to V and set the equation equal to zero, which gives,

0 = Vf(Xe) + V*f (k) = A = —(V*f (X)) ™"V (X)f (%)

Which then suggests an iterative update rule of

Xps1 = Xe — (V2F (X)) ™ Vf (Xe)f (Xk)

Conjugate gradients

Conjugate gradients

This is a general approach for solving a system of linear equations
with the form Ax = b where A is an nxn symmetric positive definite
matrix and b is n1 with x unknown.

This type of problem can also be expressed as a quadratic
minimization problem of the form,

1
min f(x) = EXTAX —b'x+c

The goal is then to find n conjugate vectors (p]Ap; = 0 for all i # j)
and their coefficients such that.

n
Xy = Z a;pj
i=1

Conjugate gradient algorithm

Given xg, we set the following initial values,

ro =Vf(xo)
Po=—"To
k =0
while ||r||2 > tol,
_ rkPr
PV (Xe)Pr
Xp1 =X + QkPr
Mot =V (Xei1)
LV ()P
Pra VS (Xe)Pr
Prit = — g1+ BrePri R =R+ 1

Qg

B

Numerical optimisation methods
in scipy

CGin scipy

Scipy’s optimize module implements the conjugate gradient

algorithm by Polak and Ribiere, a variant that does not require the
hessian,

Differences

- ay Is calculated via a line search along the direct
* Bryq is replaced with

VI (k1) (V] (k1) = VI (X))
V£ (Xe)TVF (Xe)

6k+1 =

Other methods in scipy

Method: Newton-CG o)
It is a variant of Newton’s method but does not require inverting the

hessian, or even a hessian function - in which case it can be
estimated by finite differencing of the gradient.

Method: BFGS
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a

quasi-newton that iteratively improves its approximation of the
hessian,

Method: Nelder-Mead
This is a gradient-free method that uses a series of simplexes which

are used to iteratively bracket the minimum.

	Gradient descent method in 2d
	Newton's Method in 1d
	Conjugate gradients
	Numerical optimisation methods in scipy

