@Mat“emms Sca Ds.m

inthe Sciences
DRESDEN LEIPZIG

Intro. Comp. for Data Science (FMI08)

Dr. Nono Saha
July 5, 2023

Max Planck Institute for Mathematics in the Sciences
University of Leipzig/ScaDS.Al

Spring 2023

1. Class, interface, abstract class and object
Iterable objects

Generators

Relationship between classes

S & BN

Polymorphism

Why OOP in Python?

Classes are the building blocks of object-oriented programming
(OOP) in Python. They allow you to leverage the power of Python
while writing and organizing your code.

- Model and solve complex real-world problems
- Reuse code and avoid repetition
- Encapsulate related data and behaviours in a single entity

- Abstract away the implementation details of concepts and
objects

- Unlock polymorphism with common interfaces

Class, interface, abstract class
and object

These are the basic component of Python’s object-oriented system -
we've been using them regularly all over the place and will now look
at how they are defined and used.

1 class Rectangle:

2 """An abstract representation of a rectangle

3 # Attributes

" pl = (010)

5 p2 = (1,2)

7 # Methods
s def area(self):
o return abs(self.pl[0] - self.p2[0]) *abs(self.p1[1] - self.p2

(1)

n # Setters
» def setPl(self, pl):
13 self.pl = p1l

. def setP2(self, p2):
15 self.p2 = p2

Interfaces and abstract classes

Two important points
- Interfaces are classes that contain methods without
implementations

- Abstract classes are classes with at least one method without
implementation

Example
1 class AbstractRectangle(abc.ABC) :

def __init__(self, p1=(0,0), p2=(1,2)) :
self.pl = p1l
self.p2 = p2

@abc.abstractmethod
8 def area(self):
pass

What is an object?
- Objects are instances of a class
- Objects can also represent different states of a class

- Objects are coherent entities that store data and the code (or
instructions) working on that data.

Example

1 x = Rectangle()
;. x.area()

3

1y = Rectangle(p2= (5,4))
> y.area()

Class attributes

We can examine all of a classes’ methods and attributes using

dir(),

1 dir(Rectangle)

> ## ['__class__', '__delattr__', '__dict__', '__dir__"', '__doc__
'y '__eq__', '__format__', '__ge__', '__getattribute__"', '
_.gt ', '__hash__"', '__init__"', '__init_subclass__"', '
__iter__"', '__le__", '__1t__', '__module__', '__ne__"', '
__new__"', '__reduce__', '__reduce_ex__', '__repr__"', '
__setattr__', '__sizeof__', '__str__', '__subclasshook__',
' __weakref__', 'area'l]

Where did p1 and p2 go?
dir(Rectangle())

> ## ['__class__', '__delattr__', '__dict__', '__dir__"', '__doc__
', '__eq__', '__format__', '__ge__', '__getattribute__"', '
_.gt ', '__hash__"', '__init__"', '__init_subclass__"', '
__iter__"', '__le__", '__1t__', '__module__', '__ne__"', '
__new__"', '__reduce__', '__reduce_ex__', '__repr__"', '
__setattr__"', '__sizeof__', '__str__', '__subclasshook__",

__weakref__', 'area', 'pl', 'p2'l]

Instantiation (constructors)

When instantiating a class (e.g. Rectangle()) we invoke
the__init__() method if it is present in the classes’ definition.

class Rectangle:

"""An abstract representation of a rectangle
Constructor

def __init__(self, p1 = (0,0), p2 = (1,1)):

nun

self.pl = p1l
self.p2 = p2
Methods

def area(self):

return ((self.p1[0] - self.p2[0])+(self.pl[1] - self.p2[1]))
def setP1(self, pl):

self.pl = pl

; def setP2(self, p2):

self.p2 = p2

Method chaining

We've seen a number of objects (i.e. Pandas DataFrames) that
allow for method chaining to construct a pipeline of operations. We
can achieve the same by having our class methods return self.

class Rectangle:

"""An abstract representation of a rectangle
3 # Constructor

def __init__(self, p1 = (0,0), p2 = (1,1)):

~

5 self.pl = pil
6 self.p2 = p2
s # Methods

def area(self):
return ((self.pl1[0] - self.p2[0]) *=(self.pi[1] - self.p2[1]))

def setP1(self, p1l):

12 self.pl = pi

3 return self

1w def setP2(self, p2):

15 self.p2 = p2

16 return self

Object string formating

All class objects have a default print method / string conversion
method, but the default behavior is not very useful,

print(Rectangle())
o ##f <__main__.rect object at 0x290aala60>

. str(Rectangle())
s ##t '<__main__.rect object at 0x290aalca®>'

Both of the above are handled by the __str__() method which is
implicitly created for our class - we can override this,

1 def rect_str(self):
2 return f"Rectangle[{self.pl}, {self.p2}] => area={self.area()}

+ Rectangle.__str__ = rect_str

Class representation

There is another special method which is responsible for the printing
of the object (see Rectangle() above) called __repr__() which is
responsible for printing the classes representation. If possible this is
meant to be a valid Python expression capable of recreating the
object.

def rect_repr(self):
return f"Rectangle({self.p1}, {self.p2})"

TN

. rect.__repr__ = rect_repr

1 Rectangle()
> ## Rectangle((0, 0), (1, 1))

1 repr(Rectangle())
> ## Rectangle((0, 0), (1, 1))

OOP: object relationship

Inheritance

Part of the object-oriented system is that classes can inherit from
other classes, meaning they gain access to all of their parent's
attributes and methods. It models a Is a relationship.

In an inheritance relationship:

- Classes inherited from another are derived classes, subclasses,
or subtypes.

- Classes from which other classes are derived are called base
classes or superclasses.

- A derived class is said to derive, inherit, or extend a base class.

1 class Square(Rectangle):
pass

1 Square()
, ## Rectangle((0, 0), (1, 1))

1

Multiple inheritance

1

2

3

4

5]

A class can be derived from more than one superclass in Python.
This is called multiple inheritance.

Example

class Worm:
def __init__ (self, name) :
self.name = name
def eat(self):
print(self.name +" swallows")

7 class Fly:

def __init__ (self, name) :
self.name = name

def eat(self):
print(self.name +" is nibbling..")

class ButterFly(Worm, Fly):
pass

Inheritage: overriding methods

1 class Square(Rectangle):

2

3

4

5

def __init__(self, p1=(0,0), 1=1):
assert isinstance(l, (float, int)), "1 must be a numnber"
p2 = (p1[el+1, p1[1]+1)
self.l =1
super().__init__(p1, p2)

def setPi1(self, p1):
self.pl = p1l
self.p2 = (self.pl[0]+self.l, self.pi[1]+self.l)
return self
def setP2(self, p2):
raise RuntimeError("Squares take 1 not p2")
def setL(self, 1):
assert isinstance(l, (float, int)), "1 must be a numnber"
self.l =1
self.p2 = (self.p1[0]+1, self.p1[1]+1)
return self
def __repr__(self):
return f"square({self.pl}, {self.1})"

Making an object iterable

When using an object with a for loop, python looks for the
__iter__() method which is expected to return an iterator object
(e.g. iter() of a list, tuple, etc...).

class Rectangle:
2 """An object representation of a rectangle
Constructor
def __init__(self, p1 = (0,0), p2 = (1,1)):
5 self.pl = p1
6 self.p2 = p2

8 # Methods

s def area(self):

10 return ((self.p1[0] - self.p2[0]) *(self.pl[1] - self.p2[1])
)

» def __iter__(self):
13 return iter([self.pl, (self.pi[0], self.p2[1]),
10 self.p2, (self.p2[0], self.p1[1]) 1)

14

Generators

1

We can improve the implementation above by simplify a generator
function with __iter__(). A generator is a function which using
yield instead of return which allows the function to preserve
state between next () calls.

class rect:
"""An object representation of a rectangle
Constructor
def __init__(self, p1 = (0,0), p2 = (1,1)):

nun

self.pl = p1l
self.p2 = p2
Methods

def area(self):
return ((self.pl1[0] - self.p2[0]) *=(self.pi[1] - self.p2[1])
)
def __iter__(self):
vertices = [self.pl, (self.pi[0], self.p2[1]), self.p2, (
self.p2[0], self.pi[1]) 1
for v in vertices:
yield v

Composition in Python

Composition is an OOP concept that models a has a relationship. In
composition, a class known as composite contains an object of
another class known as a component. In other words, a composite
class has a component of another class.

Example: we already used it in the previous example, but how? and
where?
Remarks

- Composition is more flexible than inheritance because it models
a loosely coupled relationship

- Changes to a component class have minimal or no effects on the
composite class

- Designs based on composition are more suitable to change

16

Example of composition in Python

1 class Salary:
o def __init__(self, pay, bonus):
] self.pay = pay
4 self.bonus = bonus
def annual_salary(self):
return (self.pay*12)+self.bonus

s class EmployeeOne:

0 def __init__(self, name, age, pay, bonus):
n self.name = name

12 self.age = age

14 self.obj_salary = Salary(pay, bonus) # composition

s def total_sal(self):
17 return self.obj_salary.annual_salary()

1w emp = EmployeeOne('Geek', 25, 10000, 1500)
20 print(emp.total_sal())

Aggregation in Python

Aggregation is a concept in which an object of one class can own or
access another independent object of another class.

- It represents Has-A's relationship.

- Itis a unidirectional association, i.e. a one-way relationship. For
example, a department can have students, but vice versa is not
possible and thus unidirectional.

- In Aggregation, both entries can survive individually, which
means ending one entity will not affect another.

Example of aggregation in Python

1 class Salary:
o def __init__(self, pay, bonus):
] self.pay = pay
4 self.bonus = bonus
def annual_salary(self):
return (self.pay*12)+self.bonus

s class EmployeeOne:

0 def __init__(self, name, age, sal):

n self.name = name

12 self.age = age

13 self.agg salary = sal # Aggregation

5 def total_sal(self):
16 return self.agg_salary.annual_salary()

s salary = Salary(10000, 1500)
1w emp = EmployeeOne('Geek', 25, salary)
20 print(emp.total_sal())
19

More relationships...

- Association: which expresses a uses-a relationship. For
example, a student may be associated with a course. They will
use the course. This relationship is common in database
systems with one-to-one, one-to-many, and many-to-many
associations.

- Delegation: which models a can-do relationship, where an
object hands a task over to another object, which takes care of
executing the task.

- Dependency injection: a design pattern you can use to achieve
loose coupling between a class and its components. With this
technique, you can provide an object’s dependencies from the
outside rather than inheriting or implementing them in the
object itself.

20

Polymorphism

Polymorphism in Python

A set of classes implementing the same interface with specific
behaviours for concrete classes is a great way to unlock
polymorphism.

Polymorphism is when you can use objects of different classes
interchangeably because they share a common interface.
Example

Python strings, lists, and tuples are all sequence data types. This

means that they implement an interface that's common to all
sequences.

We can use them in similar ways. For example, you can:

- Loop them because they provide the . __iter__() method

- Item access their through the .__getitem__() method

- Determine their number of items because they include the
.__len__() method

21

Wrapping up the OOP in Python

1. Python classes and how to use them to make your code more
reusable, modular, flexible, and maintainable

2. Classes are the building blocks of object-oriented programming
in Python

3. With classes, you can solve complex problems by modelling
real-world objects, their properties, and their behaviours

4. Classes provide an intuitive and human-friendly approach to
complex programming problems, making your life more
pleasant.

5. We can use special classes such as interfaces and abstract
classes to unlock properties like polymorphism in python

6. Classes can interact through associations, aggregations,
composition, inheritance, dependency injection and delegation

22

	Class, interface, abstract class and object
	OOP: object relationship
	Polymorphism

