@Mat“emms Sca Ds.m

inthe Sciences
DRESDEN LEIPZIG

Intro. Comp. for Data Science (FMI08)

Dr. Nono Saha
July 7, 2023

Max Planck Institute for Mathematics in the Sciences
University of Leipzig/ScaDS.Al

Spring 2023



1. Introduction to scikit-Tlearn
statsmodels + patsy

pyMC3 + arviz

pyArrow - Apache Arrow Python bindings

S BN

More material



scikit-learn

scikit-learn is an open-source machine learning library that
supports supervised and unsupervised learning. It also provides
various tools for model fitting, data preprocessing, model selec-
tion, model evaluation, and many other utilities.

- Simple and efficient tools for predictive data analysis

- Accessible to everybody and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib

- Open source, commercially usable - BSD license

This is one of several other "scikits” (e.g. scikit-image), which are
scientific toolboxes built on top of scipy.



scikit-learn: what can we do with scikit-learn?

The sklearn package contains a large number of submodules
which are specialized for different tasks/models,

- sklearn.base - sklearn.feature_extraction
- sklearn.calibration - sklearn.feature_selectio

- sklearn.cluster - sklearn.gaussian_process
- sklearn.compose - sklearn.impute

- sklearn.covariance - sklearn.inspection

- sklearn.datasets - sklearn.isotonic

- sklearn.decomposition - sklearn.kernel_approxima-
- sklearn.ensemble tion

- sklearn.exceptions - sklearn.kernel_ridge

- sklearn.experimental - sklearn.linear_model




scikit-1learn: more submodules....

- sklearn.manifold

- sklearn.metrics

- sklearn.mixture

- sklearn.model_selection
- sklearn.multiclass

- sklearn.multioutput

- sklearn.naive_bayes

- sklearn.neighbors

- sklearn.neural_network

- sklearn.pipeline

- sklearn.preprocessing

- sklearn.random_projection
- sklearn.semi_supervised

- sklearn.svm

- sklearn.tree

- sklearn.utils




Statsmodels + patsy



statsmodels

statsmodels is a Python module that provides classes and func-
tions for the estimation of many different statistical models, as
well as for conducting statistical tests and statistical data explo-
ration. An extensive list of result statistics is available for each
estimator. The results are tested against existing statistical pack-
ages to ensure that they are correct.

1 import statsmodels.api as sm
> import statsmodels.formula.api as smf
import statsmodels.tsa.api as tsa

statsmodels uses slightly different terminology for referingto y /
dependent / response and x / independent / explanatory variables.
Specifically, it uses endog to refer to the y and exog to refer to the
x variable(s).

This is particularly important when using the main API, less so when
using the formula API.



Openlntro loans data

This data set represents thousands of loans made through the
Lending Club platform, which is a platform that allows individuals
to lend to other individuals. Of course, not all loans are created
equal. Someone who is essentially a sure bet to pay back a loan
will have an easier time getting a loan with a low-interest rate than
someone who appears to be riskier. And for very risky people?
They may not even get a loan offer or may have yet to accept the
request due to a high-interest rate. It is important to remember
that last part since this data set only represents loans actually
made, i.e. do not mistake this data for loan applications!

For the full data dictionary, see here. We removed some columns to
make the data set more reasonably sized and dropped any rows with
missing values.

1 loans = pd.read_csv("data/openintro_loans.csv")



statsmodels: OLS use case

1y = loans["loan_amount"]
> X = loans[["homeownership", "annual_income", "debt_to_income", "
interest_rate", "public_record_bankrupt"]]

. model = sm.OLS(endog=y, exog=X)

s # ValueError: Pandas data cast to numpy dtype of object. Check
input data with np.asarray(data).

What do you think the issue is here?

The error occurs because X contains mixed types. Specifically, we
have categorical data columns which cannot be directly converted to
a numeric dtype. Hence, we need to take care of the dummy coding
for statsmodels (with this interface).

1 X_dc = pd.get_dummies(X)
> model = sm.0LS(endog=y, exog=X_dc)



statsmodels: fitting and summary

+ res = model.fit()
;> print(res.summary())

In contrast to pandas or scikit-learn, the summary is more detailed
and provides you with more information and even references.

Please, run it and analyze the output information.

Most of the modelling interfaces are also provided by smf
(statsmodels.formula.api) in which case patsy is used to construct
the model matrices.

1 model = smf.ols(

> "loan_amount ~ homeownership + annual_income + debt_to_income +
interest_rate + public_record_bankrupt",

5 data = loans )

s res = model.fit()

¢ print(res.summary())



statsmodels: more features...

- Logistic regression models (GLM)
1y = pd.get_dummies( possum["pop"] )
> X = pd.get_dummies( possum.drop(["site","pop"], axis=1) )

+ model = sm.GLM(y, X, family = sm.families.Binomial())
s res = model.fit()
o print(res.summary())

- t-test and z-test for equality of means

1 cm = sm.stats.CompareMeans(
; sm.stats.DescrStatsW( books.weight[books.cover == "hb"] ),
5 sm.stats.DescrStatsW( books.weight[books.cover == "pb"] ))

print(cm.summary())

o

- Contigency tables

1 gss = pd.DataFrame({"US": [454, 226], "Duke": [56,32]},
index=["A great deal", "Not a great deal"])

> tbl = sm.stats.Table2x2(gss.to_numpy())

5 print(tbl.summary())



patsy is a Python package for describing statistical models (es-
pecially linear models, or models that have a linear component)
and building design matrices. It is closely inspired by and com-
patible with the formula mini-language used in R and S.

patsy’s goal is to become the standard high-level interface to
describing statistical models in Python, regardless of what partic-
ular model or library is being used underneath.

1 from patsy import ModelDesc
> ModelDesc.from_formula("y ~ a + a:b + np.log(x)")

» ModelDesc.from_formula("y ~ axb + np.log(x) - 1")



patsy and pandas.DataFrame

Model matrix

from patsy import demo_data, dmatrix, dmatrices

data = demO_data("y", lla"’ Ilbll' "Xl“, IIX2ll)
. pd.DataFrame(data)

Or you can simply create a dmatrix and return it as a DataFrame

dmatrix("a + a:b + np.exp(x1)", data, return_type='dataframe')

Design Info

One of the keep features of the design matrix object is that it retains
all the necessary details (including stateful transforms) that are
necessary to apply to new data inputs (e.g. for prediction).

d = dmatrix("a + a:b + np.exp(x1)",data, eturn_type='dataframe')
> d.design_info

1



patsy: scikit-lego patsyTransformer

If you would like to use a patsy formula in a scikitlearn
pipeline, it is possible via the patsyTransformer from the
scikit-lego library.

1 from sklego.preprocessing import PatsyTransformer
> df = pd.DataFrame({

s "y": [2, 2, 4, 4, 6],

. "x": [1, 2, 3, 4, 5],

s "a": ["yes", "yes",

s 1)

no", "no

, uyesu]

s X, y = df[["x", "a"11, df[["y"]].values

1 pt = PatsyTransformer("xxa + np.log(x)")
; pt.fit_transform(X)

. make_pipeline(pt, StandardScaler()).fit_transform(X)



pyMC3 + Arviz

PyMC3 is a probabilistic programming package for Python that al-
lows users to fit Bayesian models using a variety of numerical
methods, most notably Markov chain Monte Carlo (MCMC) and
variational inference (VI). Its flexibility and extensibility make it
applicable to a large suite of problems. Along with core model
specification and fitting functionality, PyMC3 includes functional-
ity for summarizing output and for model diagnostics.

ArviZ is a Python package for exploratory analysis of Bayesian
models. Includes functions for posterior analysis, data storage,
sample diagnostics, model checking, and comparison. The goal is
to provide backend-agnostic tools for diagnostics and visualiza-
tions of Bayesian inference in Python, by first converting inference
data into xarray objects.

1 import pymc3 as pm
> import arviz as az 13



pyMC3: Model basics

All models are derived from the Model() class, unlike what we have
seen previously pymc makes heavy use of Python's context manager
using the with statement to add model components to a model.

1 with pm.Model() as norm:
> x = pm.Normal("x", mu=0, sigma=1)

+ x = pm.Normal("x", mu=0, sigma=1)
s ####f TypeError: No model on context stack....

7 with norm:

sy = pm.Normal("y", mu=x, sigma=1, shape=3)
9 norm.vars

14



pyMC3: Beta-Binamial model

We will now build a basic model where we know what the solution
should look like and compare the results.

with pm.Model() as beta_binom:
p = pm.Beta("p", alpha=10, beta=10)

5 X = pm.Binomial("x", n=20, p=p, observed=5)

In order to sample from the posterior we add a call to sample()
within the model context.

with beta_binom:
trace = pm.sample(return_inferencedata=True, random_seed=1234)

## |

## Auto-assigning NUTS sampler...

## Initializing NUTS using jitter+adapt_diag...

## Multiprocess sampling (4 chains in 4 jobs)

##t NUTS: [p]

## Sampling 4 chains for 1_000 tune and 1_000 draw iterations (&
000 + 4 000 draws total) took 6 seconds.

15



pyMC3: inferenceData results

1 print(trace)
> ## Inference data with groups:
3 it > posterior
4 Hit > log_likelihood
s ## > sample_stats
> observed_data

6 H##t

s print(type(trace))
## <class 'arviz.data.inference_data.InferenceData'>

xarray: N-D labelled arrays and datasets in Python

xarray (formerly xray) is an open-source project and Python pack-
age that makes working with labelled multi-dimensional arrays
simple, efficient, and fun!

See here for more details on xarray + InferenceData

16


https://python.arviz.org/en/0.14.0/getting_started/XarrayforArviZ.html

pyMC3: more...

- Posterio info

~

print(trace.posterior)## try and see the result

print(trace.posterior["p"].shape)

print(trace.sel(chain=0).posterior["p"].shape)

print(trace.sel(draw=slice(500, None, 10)).posterior["p"].
shape)

- As DataFrame

Posterior values, or subsets, can be converted to DataFrames via
the to_dataframe() method

trace.posterior.to_dataframe()
trace.posterior["p"][0,:].to_dataframe()

+ MultiTrace result

with beta_binom:

> mt = pm.sample(random_seed=1234)



pyMC3: other useful diagnostics

Standard MCMC diagnostic statistics are available via summary()

from ArviZ

az.summary(trace)

##t mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk
ess_tail r_hat

## p 0.374 0.076 0.232 0.509 0.002 0.001
1596.0 2654.0 1.0

individual methods are available for each statistic,

print(az.ess(trace, method="bulk"))
## <xarray.Dataset>

3 ## Dimensi....

print(az.ess(trace, method="tail"))
## <xarray.Dataset>

; ## Dimensio....

print(az.rhat(trace))
print(az.mcse(trace))



Apach Arrow

Apache Arrow is a software development platform for building
high performance applications that process and transport large
data sets. It is designed to both improve the performance of ana-
lytical algorithms and the efficiency of moving data from one sys-
tem or programming language to another.

A critical component of Apache Arrow is its in-memory columnar
format, a standardized, language-agnostic specification for rep-
resenting structured, table-like datasets in-memory. This data
format has a rich data type system (included nested and user-
defined data types) designed to support the needs of analytic
database systems, data frame libraries, and more.

i import pyarrow as pa

19



(Apache) Parquet

... provides a standardized open-source columnar storage format
for use in data analysis systems. It was created originally for use
in Apache Hadoop with systems like Apache Drill, Apache Hive,
Apache Impala, and Apache Spark, adopting it as a shared stan-
dard for high-performance data 10.

Core features:

The values in each column are physically stored in contiguous
memory locations, and this columnar storage provides the fol-
lowing benefits:

- Column-wise compression is efficient and saves storage
space

- Compression techniques specific to a type can be applied as
the column values tend to be of the same type

- Queries that fetch specific column values need not read the
entire row data thus, improving performance 20



(Apache) Parquet: feather...

.. Is a portable file format for storing Arrow tables or data frames
(from languages like Python or R) that utilizes the Arrow IPC format
internally. Feather was created early in the Arrow project as a
proof of concept for fast, language-agnostic data frame storage
for Python (pandas) and R.

Core features:

- Different encoding techniques can be applied to different
columns

- Direct columnar serialization of Arrow tables

- Supports all Arrow data types and compression

- Language agnostic

- Metadata makes it possible to read only the necessary
columns for an operation

21



More materials and references




More materials and references

More materials
- Introduction to pytorch
- Fundamentals of AutoGrad
- Feedforward NN
- Convolutional NN
- pytorch and GPU
- SQL and Python

References
- Introduction to scikit-learn
- Statsmodels and patsy
- PyArrow - Apache Arrow Python bindings
- Introduction to Bayesian analysis in Python: PyMC and Arviz

22


https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
https://pytorch.org/tutorials/beginner/introyt/autogradyt_tutorial.html
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_convolutional_neuralnetwork/
https://pytorch.org/docs/stable/notes/cuda.html
https://dev.mysql.com/doc/connector-python/en/
https://scikit-learn.org/stable/
https://www.statsmodels.org/stable/index.html
https://patsy.readthedocs.io/en/latest/
https://arrow.apache.org/docs/python/index.html
https://www.pymc.io/welcome.html
https://python.arviz.org/en/stable/

	Statsmodels + patsy
	More materials and references

