@Mat“emms Sca Ds.m

inthe Sciences
DRESDEN LEIPZIG

Intro. Comp. for Data Science (FMI08)

Dr. Nono Saha
May 10, 2023

Max Planck Institute for Mathematics in the Sciences
University of Leipzig/ScaDS.Al

Spring 2023

1. NumPy numerics

NumPy - Advanced indexing

NumPy - Broadcasting

NumPy - Basic file I/0

Structure of a Data Science (ML) project

v G & B N

Homework 3

NumPy numerics

NumPy numerics: basic operations

All basic mathematical operators in Python are implemented for
arrays. They are applied element-wise to the array values.

1 np.arange(3) + np.arange(3) np.arange(3) * np.arange(3)

, ## array([0, 2, 4]) ## array([0, 1, 4])

3

+ np.arange(3) - np.arange(3) np.arange(1,4)/np.arange(1,4)
s ## array([o, 0, 0]) ## array([1., 1., 1.]1)

6

; np.arange(3) + 2 np.arange(3) * 3

s ## array([2, 3, 4]) ## array([0, 3, 6])

np.full((2,2), 2) ** np.arange(4).reshape((2,2))
np.full((2,2), 2) ** np.arange(4)
Which of the two instructions will work?

~

NumPy numerics: mathematical functions

The package provides a wide variety of basic mathematical functions
that are vectorized. In general, they will be faster than their base
equivalents (e.g. np.sum() vs sum()).

np.sum(np.arange(1000))
> ## 499500

» np.cumsum(np.arange(10))
s ## array([o, 1, 3, 6, 10, 15, 21, 28, 36, 45])

; np.logl0(np.arange(1,11))
s ## array([0., 0.30103, 0.47712125, 0.60205999, 0.69897,
o ## 0.77815125, 0.84509804, 0.90308999, 0.95424251, 1. 1)

1 np.median(np.arange(10))
n ## 4.5

NumPy numerics: matrix multiplication

It is supported using the matmul() function or the operator,

1 x = np.arange(6).reshape(3,2)

>y = np.tri(2,2)

53X QY

. ## array([[1., 1.1, [5., 3.1, [9., 5.11)

sy.Tay
; ## array([[2., 1.1, [1., 1.11)

o np.matmul(x.T, x)
0 ## array([[20, 261, [26, 3511)

2y @ X
1 ## Can this work?

NumPy numerics: other linear algebra functions

The standard linear algebra functions are (mostly) implemented in
the linalg submodule. See here for more details.

np.linalg.det(y)
o ## 1.0

. np.linalg.eig(x.T @ x)
s ## (array([0.43988174, 54.56011826]), array([[-6.79911221,
-0.6011819], [0.6011819 , -0.799112211]1))

7 np.linalg.inv(x.T @ x)
s ## array([[1.45833333, -1.08333333], [-1.08333333,
0.8333333311)

0 np.linalg.cholesky(x.T @ x)
w ## array([[4.47213595, 0.],[5.81377674, 1.09544512]1)

https://numpy.org/doc/stable/reference/routines.linalg.html

NumPy numerics: random values

NumPy has another submodule called random for functions used to
generate random values

To use this, you should construct a generator via default_rng(),
with or without a seed, and then use the generator's methods to
obtain your desired random values.

1 rng = np.random.default_rng(seed = 1234)
> rng.random(3) # ~ Uniform [0,1)
s ## array([0.97669977, 0.38019574, 0.92324623])

rng.normal(e@, 2, size = (2,2))
array([[0.30523839, 1.72748778],[5.82619845,
-2.9576467211)

@

rng.binomial(n=5, p=0.5, size = 10)
array([2, &, 2, 2, 3, 4, 4, 3, 3, 3]1)

© o~

NumPy - Advanced indexing

From last time: subsetting with tuples

Unlike lists, a ndarray can be subset by a tuple containing integers

. X = np.arange(6)
2 X
3 ## array([o0, 1, 2, 3, 4, 5])

5 x[(0,1,3),]

array([0, 1, 31)

s x[(6,1,3)]

1 ## Traceback (most recent call last):
) File "<stdin>", line 1, in <module>

3 IndexError: too many indices for array: array is 1-
dimensional, but three were indexed

Question

What if we use the list instead?

NumPy - Advanced indexing: exercise

Given the following matrix,

1 X = np.arange(16).reshape((4,4))

2 X

3 ## array([[o, 1, 2, 31, [4, 5, 6, 71, [8, 9, 10,
111, [12, 13, 14, 151])

Write an expression to obtain the centre 2x2 values (i.e. 5,6, 9, 10 as a
new matrix).

NumPy - Advanced indexing: boolean indexing

Lists or ndarrays of boolean values can also be used to subset,
positions with True are kept, and False are discarded.

1 X = np.arange(6)

2 ## array([o0, 1, 2, 3, 4, 5])

4 x[[True, False, True, False, True, False]l]
5 ## array([0, 2, 4])

7 x[np.array([True, True, False, False, True, Falsel)l]
8 ## array([0, 1, 4])

The utility comes from vectorized comparison operations,

1 X > 3

2 ## array([False, False, False, False, True, Truel)
3 x[x>3]

4 ## array([4, 51)

5 X % 2 ==1

6 ## array([False, True, False, True, False, Truel)

NumPy - Advanced indexing: boolean operators

If we want to use a boolean operator on an array, we need to use &, |,
and ~ instead of and, or, and not respectively.

1 X = np.arange(6)
2 X
array([0, 1, 2, 3, 4, 5])

array([True, False, True, False, True, Falsel)

2 ~y
10 ## array([False, True, False, True, False, Truel)
n

12 y & (x > 3)

13 ## array([False, False, False, False, True, Falsel)

15 yI(x>3)
16 ## array([True, False, True, False, True, Truel)

NumPy - meshgrid

One other useful function in NumPy is meshgrid(), which generates
all possible combinations between the input vectors,

1 pts = np.arange(3)

2 X, y = np.meshgrid(pts, pts)

3 X

4 ## array([[o0, 1, 21, [e, 1, 21, [e, 1, 21])
6 y

7 it aI‘I‘ay([[O, 01 0]1 [17 11 1]1 [21 21 2]])

np.sqrt(xx*2 + yx%2)
7 ## array([[o. , 1. , 2. 1,

2 #it [1. , 1.41421356, 2.23606798],
13 #t [2. , 2.23606798, 2.8284271211)

1

NumPy - meshgrid: exercise

We will now use this to attempt a simple brute force approach to
numerical optimization, define a grid of points using meshgrid() to
approximate the minima of the following function:

fO,y) = (1—x)* +100(y — x°)°

Considering values of x,y € (—1,3), which values of x,y minimize this
function?

NumPy - Broadcasting

NumPy - Broadcasting: general broadcasting

When operating on two arrays, NumPy compares their shapes
element-wise. It starts with the trailing (i.e. rightmost) dimensions
and works its way left. Two dimensions are compatible when

- they are equal, or
- one of them is 1

If these conditions are not met, a ValueError: operands could not
be broadcast together exception is thrown, indicating that the arrays
have incompatible shapes.

1 x = np.arange(12).reshape((4,3)) x = np.arange(12).reshape((3,4))

2 X X

; ## array([[o, 1, 21, [3, 4, ## array([[0, 1, 2, 31, [4,
51, [6, 7, 81, [9, 16, 5, 6, 71, [8, 9, 10,
1111) 1111)

s x + np.array([1,2,3]) x + np.array([1,2,3])

NumPy - Broadcasting: mechanism

1 x = np.arange(12).reshape((4,3)) x = np.arange(12).reshape((3,4))
by =1 y = np.array([1,2,3])

3 Xty X+y

5 X (2d array): 4 x 3 X (2d array): 3 x &4

6y (1d array): 1 y (1d array): 3

s x+y (2d array): 4 x 3 x+y (2d array): Error

10 x = np.arange(12).reshape((3,4))
n X = np.arange(12).reshape((4,3)) vy = np.array([1,2,3]).reshape
vy = np.array([1,2,3]) ((3,1))

1B X+Y X+y

14

15 X (2d array): 4 x 3 X (2d array): 3 x &

16 Y (1d array): 3 y (1d array): 3 x 1

s x+y (2d array): 4 x 3 x+y (2d array): 3 x &

19

Please, check the official NumPy user guide - Broadcasting b

https://numpy.org/doc/stable/user/basics.broadcasting.html

NumPy - Broadcasting: example for data standardizing

Below we generate a data set with 3 columns of random normal
values. Each column has a different mean and standard deviation
which we can check with mean() and std().

1 rng = np.random.default_rng(1234)

2 d = rng.normal(loc=[-1,0,1], scale=[1,2,3], size=(1000,3))

d.mean(axis=0)
array([-1.0294382 , -0.01396257, 1.01241784])

6 d.std(axis=0)
array([0.99674719, 2.03222595, 3.106252191])

Use broadcasting to standardize all three columns to have a mean of
0 and a standard deviation of 1.

Check the new data set using mean() and std().

15

NumPy - Broadcasting: exercises

For each of the following combinations, determine what the resulting
dimension will be:

- A(128 x 128 x 3) + B(3)

- A(Bx1x6x1)+B(7x1x5)
© A2 x 1)+ B(8 x 4 x 3)

- AB3x 1)+ B(15x 3 x5)

- A(3) + B(4)

16

NumPy - Basic file 1/0

NumPy - Basic file 1/0: reading and writing arrays

We will not spend much time on this as most data you will encounter
is more likely to be in a tabular format (e.g. data frame), and tools
like Pandas are more appropriate.

For basic saving and loading of NumPy arrays, there are the save()
and load() functions, which use a built-in binary format.

1 X = np.arange(le5)

2 np.save("data/x.npy", x)

3 new_x = np.load("data/x.npy")
4 np.all(x == new_x)

True

Additional functions for saving (savez(), savez_compressed(),
savetxt()) exist for saving multiple arrays or saving a text
representation of an array.

If you need to read delimited (CSV, tsy, etc.) data into a NumPy array,
you can use genfromtxt().

Structuring an ML project

Structuring an ML project

1. Introduction to ML strategy

Settting your project goal

Comparing your model to human-level
Carrying out the error analysis
Mismatched training and dev/test sets

v G & B N

Homework 5

Why ML strategy?

Motivating example: cat classifier

Ideas
- Collect more data - Try dropout
- Collect a more diverse - L, regulisation
training set - Change the network
- Train algorithm longer with architecture
GD - Try bigger network

- Try Adam instead of GD - Try smaller network

19

Setting up your goal

Using a single number evaluation metric
- |ldea — Code — Experiments

Classifier | Precision | Recall | F1 Score
A 95% 90% 92.4%
B 98% 85% 91.0%

- With two evaluation metrics is difficult to choose which model
performs better

- Dev set and a single number of evaluation metrics can speed up
your iterative process

Example of single evaluation metrics
- Harmonic mean (F1 score)
- Geometric mean
- Median

- etc... 20

Setting up your goal

Satisficing and optimizing metrics
- Another cat classification example
Classifier | Accuracy | Running time

A 90% 80ms
B 92% 95ms
C 95% 1.5ms

- Cost = accuracy - 0.5x running time

- Maximize the accuracy subject to running time < 100ms:
accuracy is an optimizing metric, and the running time is a
satisficing metric.

- With N metrics: 1- optimizing and N — 1 satisficing metrics

Another example: trigger words/ Wakewords
- Maximizing accuracy (optimizing metric)

- Number of false positives (satisficing metric < 1))

Setting up your goal: training/dev/test data sets

Cat classification dev/test sets

- USA Dev set:

- Germany - USA

- China - Germany

- Cameroon - China, Cameroon
- Congo Test set:

- France - Congo

- Russia - France

- Others - Russia, Others

Recommandations

- Randomly shuffle into dev/test sets

- Both dev/test should have data that come from the same

distributions
22

Setting up your goal: training/dev/test data sets

Old/new way of splitting data
Training (70%) Test (30%)
Training (60%) Dev (20%) Test (20%)

Dev

(1%)

Test
(1%)

Training (98%)

Size of the test set
- Big enough to give high confidence in the overall performance

of the model
- For some applications we could have no test set

Setting up your goal: training/dev/test data sets

When to change dev/test sets and metrics?

Let us say you have the following scenario:

- Metric: classification error J(Y, V) = 1 S0 £{y() 2 ¥0)}
- Algorithm A: 3% error — but wrongly classifies pornographic pics
- Algorithm B: 5% error — but no porn picture

Model analysis
1. Metric + Dev: Algorithm A is the best
2. You/ users or production: Algorithm B is the best

In this case, what should we change? The dev/test sets or the metric?

24

Setting up your goal: training/dev/test data sets

Another example

- Metric: classification error J(Y,¥) = 1 :j” L£{yW £y}

l"’ |

In this case, what should we change? The dev/test sets or the metric?

- Algorithm A: 3% error
- Algorithm B: 5% error

1. Metric + Dev

2. User images

25

Comparing to human-level performance

Why human-level performance?

1. Advances in DL and ML algorithms with application in many
areas

2. The workflow of designing and building an ML system is much
more efficient for tasks that humans can also do

desasssssssssnssssssnssnanunnnnnnnnnnnsnns B3YESOptimalerror

Accuracy

Time %

Comparing to human-level performance

Why comparing your model performance to human-level?

Humans are quite good at a lot of tasks. So long as ML is worse than
humans, we can:
1. Get labelled data from humans

2. Gain insights from manual error analysis: Why did a person get
this right?

3. Better analysis of bias/variance
Cat classification example

Human error (= Bayes error) | 1% | 7.5%
Training error 8% | 8%
Dev error 10% | 10%

Focusing on bias or variance reduction techniques?
27

Understanding the human-level performance

Human-level as a proxy for Bayes error

Medical image classification example:

Let us suppose you have this:

1. Typical NUMAN « v vvveeenniieeeannn. 3% error
2, Tl GOEiEl accacoacsacancossancaccs 1% error

3. Experienced doctor -+« -vviieiiiann 0.7% error
4. Team of experienced doctors -+« .. 0.5% error

What is the "human-level” error here?

case 1 case 2 case 3
Human error (~ Bayes error) | 1/0.7/0.5% | 1/0.7/0.5% | 1/0.7/0.5%
Training error 5% 1% 0.7%

Dev error 6% 5% 0.8%

28

Error analysis

Carrying out error analysis
When working on an ML project and your model does not achieve
the human-level performance, you should:

1. Look at dev examples to evaluate ideas

2. Evaluate several ideas in parallel

Should you try to make your cat classifier do better on dogs?

- Get ~ 100 mislabeled dev set example
- Count up how many dogs are 29

Error analysis

Evaluating multiple ideas in parallel
Ideas for our cat detection:

1. Fix pictures of dogs being recognized as cats
2. Fix great cats (lions, panthers, etc...) being misrecognized
3. Improve performance on blurry images

Images | Dog | Great cats | Blurry | Instagram | Comments

1 Yes Pitball
2 600 600 Yes Yes 500
3 Yes Yes Rainy day

Total % | 8% 43% 6% 12%

30

Error analysis

Conclusion

1. Incorrectly labeled data vs. mislabeled data

2. Consider adding a column in your error analysis for incorrectly
labelled

3. DL models are good at handling random incorrectly labelled in
the training set

Correcting "incorrect” dev/test set examples

- Apply the same process to your dev and test sets to make sure
they continue to come from the same distribution

- Consider examining examples your algorithm got right as well as
ones it got wrong
- Train and dev/test data may now come from slightly different

distributions .

Mismatched training and dev/test sets

Training and testing on different distributions

Let's consider our cat app example:

1. Data from the internet, e.g. from web pages: 200K images of
high quality

2. Data from the mobile app: 10K images of average or, let us say,
low quality

What are the options for the Training and dev/test data sets?
Two suggestions:

- Option 1: Shuffle the two datasets into one distribution
| Training: 205K | Dev: 2.5K | Test: 2.5K |

- Option 2: Take the dev/test from the mobile app data
| Training: 205K | Dev: 2.5K | Test: 2.5K |

32

Mismatched training and dev/test sets

Bias and variance with mismatched data distributions

Let's consider our cat app example and assume humans get ~ 0%

error
1. Trainmg @FRBIF 00 cco0co0c0000000000000000 1% error
2. DEY A} cocococoooocacooocaoooooons 10% error

When applying the error analysis, what problem do we have here?

What to do?

- Define a training-dev set: same distribution as the training set,
but not used for training
Training: 200K | Training-dev: 5K | Dev: 2.5k | Test: 2.5K

33

Mismatched training and dev/test sets

Addressing the data mismatch problem

1. Carry out manual error analysis to try to understand the
difference between training and dev/test sets

2. Make training data more similar, or collect more data similar to
dev/test sets

Remarks

- Artificial data synthesis: you could generate more data. e.g.
Speech recognition task

- Problem with overfitting to a single noise: could be better with
more noise types

- The synthesized data could be less representative than all audio
with random noise

34

	NumPy numerics
	NumPy - Advanced indexing
	NumPy - Broadcasting
	NumPy - Basic file I/O
	Structuring an ML project

